The Paradigm Transformation of Interaction Design Empowered by AI

Baijin Li¹

¹ Wuhan University of Technology, Wuhan, China ¹Corresponding author. Email: 328693@whut.edu.cn

ABSTRACT

This article focuses on the empowering role of AI in interaction design, analyzing it from three dimensions: user experience, design process, and social value. At the user experience level, AI-driven interaction design breaks through traditional interaction constraints, transitions from standardization to precise adaptation, and presents characteristics of intelligence and personalization. At the design process level, AI reconstructs the design decision logic through multimodal data analysis, reshapes the production chain with the help of auxiliary tools, and achieves the transformation from experience-driven to data-driven. At the level of social value, AI promotes the democratization of creativity, facilitates interactive design services for the public, and supports sustainable development, becoming a link between social equity, ecological protection, and cultural heritage. The empowerment of AI in interaction design is a comprehensive paradigm transformation that will continue to serve human development and social progress, optimizing digital civilization in the future.

Keywords: AI (artificial intelligence), Interaction design, Paradigm transformation, User experience, Design process, Social value.

1. INTRODUCTION

In the current era of continuous development of digitization and intelligence, AI has penetrated into multiple fields of society such as production and manufacturing, daily life, culture and entertainment with a disruptive force. AI is constantly breaking through cognitive boundaries and reshaping the underlying logic of dialogue between humans and technological systems. At the same time, as the core hub connecting people and the digital world, interaction design has ushered in a development trend in recent years. From the touch interaction of smartphones to the voice commands of smart homes, from the immersive experience of virtual reality to the scene-based services of in car systems, interaction design has long surpassed the scope of simple "interface beauty" or "convenient operation", becoming a key force in shaping the quality of digital life, defining the value of technological products, and even influencing the way society operates. It is like an invisible bridge, determining how technology is perceived and used, and ultimately how it serves people. Its importance is

becoming increasingly prominent in today's era where digital survival has become the norm.

At present, the research on AI and interaction design is showing a thriving trend, with related achievements emerging like mushrooms after rain. Previous scholars' research on AI and interaction design has mostly focused on the application of AI in specific interaction products, such as intelligent voice assistants, intelligent car control systems, or interaction design in specific fields. Although these studies have achieved fruitful results in their respective focal points, clearly presenting the innovation and optimization brought by AI to interaction design in different scenarios, they lack a comprehensive review and summary of the paradigm shift in interaction design triggered by AI. It is in this context that the paradigm shift in interaction design empowered by AI has profound historical inevitability.

2. USER EXPERIENCE INNOVATION IN INTERACTION DESIGN EMPOWERED BY AI

2.1 Intellectualization

Al drives technologies such as voice interaction, gesture recognition, and emotion computing. These technologies are fundamentally restructuring the paradigm of human-computer interaction. Their core value is to break through the physical constraints of graphical user interfaces on mice and keyboards, and achieve interactive modes that conform to human natural communication habits.

The maturity of voice interaction technology is essentially a practical application in the field of natural language processing. Specifically, it is the application of intent recognition and dialogue state tracking algorithms. Represented by intelligent assistants such as Siri and Tmall Genie, they can convert users' natural language commands into machine executable operations. This process transforms the interaction dimension from spatial positioning to semantic understanding. In smart home systems, voice control has become popular. This is precisely following the principle of "minimum action cost", reducing the number of operational steps, and improving the quality of user experience.

Emotional computing technology has propelled interaction design from functional satisfaction to emotional influence and empathy. This technology is based on multimodal data fusion algorithms, such as spectral analysis of speech intonation and feature extraction of facial micro expressions. Through these methods, a dynamic evaluation model of user emotional state is constructed. In medical settings, smart devices can recognize anxiety features in users' voice or subtle facial expressions. Subsequently, it will automatically adjust the tone and content complexity of the interactive dialogue. In other words, by perceiving users' emotional needs, an emotional connection is established between technology and humans, achieving a "warm interaction".

The fusion application of multimodal interaction technology further restores the instinctive interactive experience. Meta's Aria Gen 2 smart glasses collaborate with eye tracking and gesture recognition technology to construct a contactless interaction paradigm that combines gaze and gesture. Its design logic simulates human natural body language and visual attention

allocation patterns to reduce cognitive load during the interaction process.

AI uses algorithmic models to digitally simulate human communication methods, finding a balance between technical feasibility and user naturalness. This evolution not only improves interaction efficiency, but also reshapes the relationship between humans and technology. This lays the foundation for building more inclusive and humane technological products.

2.2 Personalization

AI, with data as the cornerstone and algorithms as the engine, is reshaping the underlying logic of interaction design, driving its leap from standardized one size fits all to precise personalized design. Taking Endel, a personalized music therapy platform, as an example, it collects multi-source data such as user heart rate, exercise status, time, and weather, and uses algorithms to process and dynamically adjust parameters such as rhythm, timbre, and frequency of music in real time, adapting to different scenarios such as focus, relaxation, sleep, and exercise, forming a real-time feedback loop based on user status and environment. After the user's physiological and environmental changes are captured in real-time, AI will adjust the music content in real time, rather than relying on fixed tracks; Simultaneously, AI can support crossdevice scenarios such as mobile phones, smart homes, and in car personalized adaptation, adjust data collection and music generation logic based on scene characteristics, thereby achieving personalized interaction design from fixed content output to dynamic and accurate adaptation, enhancing the targeted and interactive user experience.

From practical experience in various fields, AIdriven interaction can accurately meet user needs and form more targeted experience modes. In the field of education, AI-driven adaptive learning systems provide learners with personalized learning paths, such as Banyu Zhixue generating a "one person, one case" plan through entrance tests and combining it with Feynman learning methods to guide deep understanding. In the context of health management, the Huaxia Health Big Model integrates blockchain and generative AI to generate exclusive health consultants based on users' daily health data, providing comprehensive interventions from diet to psychology. In the field of e-commerce, JD's PLUS membership system is a typical example. Through AI algorithms, JD.com can accurately

identify high-value users and provide them with exclusive discounts and services. In addition, JD.com also utilizes AI technology to analyze the behavior of its members, promptly identifying potential lost users and taking measures to retain them, effectively improving member loyalty.

3. INNOVATION IN THE DESIGN PROCESS OF INTERACTION DESIGN EMPOWERED BY AI

3.1 Refactoring Design and Production Decisions

In the traditional interaction design process, the requirement insight stage has long relied on qualitative research methods such as questionnaires and interviews. These methods are limited by sample size and the interviewee's ability to express themselves, often making it difficult to touch on users' unspoken implicit needs, resulting in strong experiential dependence in design decisions. The intervention of artificial intelligence technology has achieved a paradigm shift in design decision logic from empirical inference to data modeling by constructing a multimodal data parsing framework.

Natural language processing technology is based on sentiment analysis and topic modeling algorithms to deeply mine unstructured text data such as social media comments and customer service conversations. By identifying high-frequency semantic units and potential demand association rules, it transforms users' vague experience feedback into quantifiable pain point indicators.

This intelligent decision-making model is based on comprehensive data, effectively overcoming the problems of sample bias and subjective judgement in traditional design, establishing the relationship between user behavior and design parameters, providing verifiable and iterative basis for interaction design, and promoting the development of interaction design towards more empirical research directions.

3.2 Reshaping the Design and Production Chain

In the practical aspect of interaction design, AI-assisted tools are reshaping the underlying logic of design and production through automation technology and collaborative innovation models. The application of such tools is the concrete

practice of human-machine collaboration systems in the field of design, which achieves optimized allocation of design resources through task decomposition and process reconstruction.

Specifically, generative AI tools represented by MidJourney, based on algorithmic models, free designers from repetitive labor such as interactive prototyping. This type of tool uses textual descriptions for visual output, enabling rapid generation of design prototypes and parallel implementation of multiple solutions. This allows designers to focus their energy on higher-level innovative work such as user experience strategies.

The human-machine collaboration mode constructed by AI-assisted tools promotes designers to transform from executors to strategic decision-makers. Designers lead the creative direction, while AI machines take on the execution details. This not only improves the efficiency of design production, but also promotes the evolution of interaction design from experiential practice to data-driven systematic engineering.

4. THE ENHANCEMENT OF SOCIAL VALUE OF INTERACTION DESIGN EMPOWERED BY AI

4.1 Promoting the Democratization of Creativity

The popularization of AI tools and their intelligence are constantly changing the social participation pattern in the field of interaction design, breaking down the technical barriers and knowledge monopolies of professional design, and promoting the transformation of creative production from elite led to public participation. This process contains significant social equality value and cultural innovation significance.

AI design tools rely on specific code programs to generate diverse design elements, which reconstruct the threshold of creative production capabilities. Represented by platforms such as "Jimeng", which are based on pre trained generative models and visual understanding algorithms, complex design logic is transformed into functional modules that can be called through natural language instructions. Non-professional users do not need to master too many professional design software operation skills, and can generate visual materials or interactive prototypes that meet aesthetic standards through text descriptions or continuous polishing of text instructions. This mechanism

achieves the encapsulation and transmission of design knowledge, transforming the designer's professional experience into parameter settings in the algorithm model, and shifting creative production from skill dependence to requirement expression.

From the perspective of social impact, the trend of AI-driven creative popularization has dual value. At the individual level, it empowers non-professional groups with design autonomy, making individuals producers and disseminators of creativity; At the industrial level, it drives the design market to shift from supply scarcity to demand dominance, forcing the professional design field to upgrade to higher-level strategic innovation and emotional design.

The wave of creative popularization brought by AI technology is not only an innovation in design tools, but also a reconstruction of the design power structure. It empowers the redistribution of creative resources through technology, transforms interaction design from a professional activity serving minority groups to a universal practice serving the general public, and provide a technological path and theoretical support for building a more inclusive cultural innovation ecosystem.

4.2 Promoting Sustainable Development

The transformation of technology products by AI provides powerful impetus for sustainable development. Interaction design is no longer just an operational process, but a link that connects social equity, ecological protection, and cultural heritage.

In promoting social equity, AI makes interaction design more inclusive. Speech recognition technology can convert the speech of visually impaired people into screen content and read it out, allowing them to use mobile phones and computers smoothly and never falling behind in the digital age. This is the embodiment of "people-oriented" in sustainable development.

Secondly, in terms of assisting ecological protection, AI-driven interactive design provides a concrete lever for green development. AI can not only understand people's needs, but also take into account ecological benefits: intelligent air conditioners will record the master's habit of adjusting temperature, adjust the operating state in advance, and reduce energy consumption; Xianyu accelerates idle circulation, improves transaction efficiency and trust, unleashes consumption

potential, provides entrepreneurial and employment opportunities for young people, and promotes high-quality development of the digital economy and circular economy through innovative models, technological applications, and AI interactive design. Interaction design has become a bridge connecting human life and ecological protection, making environmental protection a reality.

The power of AI-empowered interactive design in promoting cultural development should not be underestimated. As a new cultural productivity, it significantly empowers traditional culture. It can transform photos of representative scenic spots on Huizhou's ancient post roads, such as Luofu Mountain and Chongxu Ancient Temple, into cyberpunk style illustrations through style transfer. It can also digitize Yangjiang lacquerware into game treasure chests, attracting the attention of young people; It is also possible to design an IP image of Huizhou Ancient Post Road that meets the aesthetic preferences of the young market through the use of cultural and graphic functions, effectively promoting the digital revitalization and innovative dissemination of cultural heritage.

AI-empowered interactive design promotes social equity by enhancing inclusivity, assists ecological protection through intelligent means, and promotes cultural heritage through innovative forms. It has become a comprehensive link between social equity, ecological protection, and cultural heritage, injecting strong and diverse impetus into sustainable development.

5. RISK ANALYSIS IN AI-EMPOWERED INTERACTION DESIGN

The empowerment of AI in interaction design not only involves the superposition of technical aspects, but also triggers a comprehensive paradigm shift from user experience to design process, and then to social value. In terms of user experience, intelligence has broken through the physical and cognitive boundaries of traditional interaction, while personalization has achieved a leap from standardized supply to precise adaptation, making technology more in line with people's natural needs and emotional desires; In the design process, the data-driven decision-making mode and the humanmachine collaborative production chain promote the shift of interactive design from experience driven practice to scientific and systematic engineering, greatly improving design efficiency and innovation potential; In terms of social value, AI not only breaks down the barriers of creative production and promotes the democratization of design, but also makes interactive design a link between social equity, ecological protection, and cultural heritage, injecting diverse driving forces into sustainable development.

significance The profound transformation lies in redefining the relationship between technology and humanity — AI is no longer a cold tool, but a bridge through interactive design that achieves a deep integration of technological rationality and humanistic care. In the future, with the continuous evolution of AI technology, interaction design will undoubtedly unleash its potential in a wider range of scenarios. Its core is always "people-oriented", seeking a dynamic balance between technological possibilities and human needs, ultimately serving the comprehensive development of people and the continuous progress of society, and becoming a key force in shaping a better digital civilization.

In the development process of AI-empowered interactive design, multiple risks and hidden dangers have also emerged. The imperfect legal system provides an opportunity for privacy theft, and some entities use the hidden nature of AI interaction design technology to excessively collect users' private information through functions such as voice command wake-up and behavior data tracking, which to some extent erodes users' trust in intelligent interaction systems.

The structural shortage of talent supply directly restricts the application efficiency of AI technology. AI tools are rapidly impacting the design field, and a large number of design teams lack composite talents who understand both interactive logic and algorithm principles, resulting in the simplified use of AI tool functions and the inability to fully unleash their deep empowering value. What is even more alarming is that some designers use AI to achieve hidden emotional manipulation, accurately capturing users' psychological weaknesses through algorithms, and inducing irrational decisions through false interactions. This phenomenon deviates from the humanistic essence of interaction design. The imbalance of the human-machine coordination mechanism further exacerbates the risk, just as the excessive dependence of intelligent driving car systems on operators can lead to tragedies. If the relationship between AI intelligence and human dominance cannot be properly handled, interaction design may transform from a "service tool" to a "source of risk". The

combination of these issues not only hinders the healthy development of AI in the field of interaction design, but also poses a potential threat to user rights and social trust.

6. CONCLUSION

The empowerment of AI in interaction design has made technology more in line with human needs, promoting the development of design towards scientific and democratic directions. However, this development has also exposed security issues such as privacy risks, talent shortages, and emotional manipulation. This means that the integration of AI and interaction design presents both opportunities and challenges. Only by embracing technological changes while facing and addressing these risks and hidden dangers, supported by a sound legal system, sufficient talent reserves, adherence to humanistic bottom lines, and reasonable human-machine collaboration mechanisms, can AI truly achieve sustainable development in the field of interaction design and find the best balance between technological progress and human well-being.

REFERENCES

- [1] Ma Fang, Research on the Application of AI Technology in Indoor Architectural Space Perception and Interaction Design [J]. Housing, 2025, (08): 18-21.
- [2] Zhang Yunchi, Technical Realization of Personalized Music Healing Platform Based on Interaction Design - in the Case of Endel [D]. Shanghai Conservatory of Music, 2025.
- [3] Yan Jiayi, Research on Interaction Design of UGC Online Exhibition App Based on Emotional Design [D]. Jiangnan University, 2024.
- [4] Zhang Jin, Research on the Trends and Technological Innovation of Interactive Design in the Era of Integrated Media [J]. Allmedia Explorations, 2025, (04): 123-125.
- [5] Du Dongxia, Research on Interactive Design of Digital Media Based on Artificial Intelligence Technology [J]. China AUTO-ID, 2025, (01): 75-80.
- [6] Pan Yupei, Lai Jiandu, Li Siting, Application of Generative Artificial Intelligence in Digital Revitalization of Huizhou Ancient Post Road Cultural Heritage [J]. Public Communication

Innovation Humanities and Social Sciences Research, Volume 21, Issue 8, 2025. ISSN: 2949-1282
Proceedings of The 5th International Conference on Art and Design:
Inheritance, Innovation and Digital Technology (ADII 2025)

of Science & Technology, 2024,16(24): 156-161.